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Kang-Redner small-mass anomaly in cluster-cluster aggregation
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The large-time small-mass asymptotic behavior of the average mass distriﬁ(timru) is studied in a
d-dimensional system of diffusing aggregating particles fetd<2. By means of both a renormalization
group computation as well as a direct resummation of leading terms in the small-reaction-rate expansion of the
average mass distribution, it is shown tRgm,t) ~ (14%) (mYd/t)er for m<t¥2, whereegr= e+ O(€?) and
e=2—d. In two dimensions, it is shown th&(m,t)~In(m)In(t)/t? for m<t/In(t). Numerical simulations in
two dimensions supporting the analytical results are also presented.
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[. INTRODUCTION on the same lattice site aggregate together to form a new

particle whose mass is the sum of masses of the two con-

Reaction-diffusion systems in low dimensions provide anstituent particles. As time increases, the number of particles
excellent testing ground for developing our understanding oflecreases due to collisions and ultimately whenc, all

the fluctuation effects in complex systems far from equilib-particles coagulate together to form one massive aggregate.

rium. A great deal of information, both numerical and ana-However, at finite times there is a well defined average mass

lytical, has been gathered over the past 20 years to show thaistributionP(m,t), which is of interest to determine. It will
the evolution of statistical properties in simple reaction-pe shown latefsee the text following Eq16)] that the large
diffusion systems in low dimensions is anomalous, in thetime limit of this model is the same as the largdimit. The
sense that it does not follow the corresponding mean fiel .« |imit was studied numerically by Kang and Redner in
equations(see Ref[1] for a short review In low enough one and two dimensiori§]. It was shown thaP(m.t) has
dimensions, in the instances where an exact solution is lack- . — —d _dp o
ing, there are no formal methods by which the exponent%he sca_lmg formP(m,t) =t""f(mt"™), Whered$2 IS the
characterizing the different physical quantities may be calcudimension. The two exponents are easily determined from
lated. The renormalization group meth(zbe Ref[2] for a  the two conditiong mP(m)dm~t° (mass conservatigrand
review) provides the only systematic way to calculate thesef P(m)dm~t~%? (recurrence of random walkg4]. The

exponents and thus understand fluctuation-dominated kinegma|l-mass behavior @(m,t) can be obtained by knowing
ics in reaction-diffusion systems. In this paper, we considethe smallx behavior of the scaling functiofi(x). On the
the model of |rr§ver5|ble aggregation of diffusing, massivepasis of numerical simulations it was conjectured in R&f.

particlesA;+A;—A;,;, in dimensions ¥d<2, and use that f(x)~x@~9%"In one dimension, the model can be
the renormalization group method to calculate the smallsolved exactly5,6]; it was shown thaff(x) ~x or equiva-

mass (n<t%?) behavior of P(m,t), the mean density of lently P(m,t)~mt 3?for m<\}t. The one-dimensional so-
particles of massn at time t. As we explain later in this lution uses the property of ordering of particles on a line and
section, this problem of determinir@(m,t) requires using is not generalizable to higher dimensions. In two dimensions,

the full power of the renormalization-group method. This isf(x) was seen numgrlcally to increase M}for smallx [3].
unlike many other problems where just considering the ratéo‘l_so’ n two d|_m_en5|0_ns, the scaling function could be deter-
equations with a renomalized reaction ratds enough to Mined in the limit of fixedx for t—ce, wherex=min(t)/t. In
obtain the right answer. this case it was show[i7] that P(m,t) =t 2In?(t)e”* for x

We now give a more precise definition of the cluster-< In"*(t) and [In(x)|<[In(t)|. This result however, becomes

. A . incorrect in the limit wherm is fixed ast— .
cluster aggregatiofiCCA) modelA;+A;—A;,; and review -

earlier relevant results. Consideidalimensional lattice and In this paper, we compuﬂé(r_n,t) in1=d<2in thell|m|t

particles that possess a positive mass. Given a configuratidn” M Mo=fixed, wherem, is the mass of the lightest

of particles on this lattice, the system evolves in time via theparticle att=0. We show thaP (m,t) ~ (1A% (m/t)e«r

following microscopic movesti) With rate D, each particle  for m<t%?, whereecg=e+0(e?) ande=2-d. In two di-

hops to a nearest neighbor, afiid with rate\, two particles mensions, it is shown thaP(m,t)~In(m)in(t)/t> for m
<t/In(t). These results provide a theoretical basis to the re-
sults obtained by numerical methods in R&.

*Electronic address: supriya@santafe.edu The CCA model may also be considered to be a special
"Electronic address: r.ravindran1@physics.ox.ac.uk case of the more general model in which the aggregation
*Electronic address: olegz@maths.warwick.ac.uk kernel is mass dependent. For a review of results on the rate
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equation approach to this problem, see REfs9]. The de-  in order to compute the anomalous dimensio®(in, x,t) in
pendence ofP(m,t) on m in one dimension in this more the form of thee=2—d expansion. Since the peculiarity in
general model has also been studi&d]. In this paper, we the small-mass distribution of cluster-cluster aggregation was
will restrict ourselves to the aggregation kernel which isfirst discussed in Ref3] we refer to this as thKang-Redner
mass independent; i.e., the ratesndD are independent of anomaly. .

mass. When the mass is ignored ane «, the CCA model In addition to the calculation dP(m,t), we found many
reduces to the well-studietl+ A— A model[11]. The CCA  similarities between the problem of cluster-cluster aggrega-
model and its variants also find application in a large numbetion and the problem of weak turbulentsee Ref[24] for a

of physical systems including colloidal suspensiphg), ir- review on weak turbulengeWe elaborate on this connection
reversible polymerizatiofil3], aerosols and cloud formation in Sec. VI, where the Kang-Redner anomaly is interpreted as

[13], river networks14], and coarsening phenomefis). a violation of the Kolmogorow(constant flux spectrum of
Field theoretic methods have been previously used tdarticles in mass space due to strong flux fluctuations.
study complex systems far from equilibriu(eee Ref[16] The rest of the paper is organized as follows. Section Il

for a reviev\)_ We bneﬂy review results relevant to reaction- contains a discussion of the stochastic integro-diﬁ:erential
diffusion systems. In some earlier works7,18], the effec- equation satisfied bP(m,i,t). The mean field results, as

tive reaction rate and the decay exponent of the average parell as the reasons for their failure in low dimensions are
ticle density were computed for th&+A—A(ZJ) model. also included. In Sec. lll, we analyze the large-time

The renormalization group study of the same model withasymptotic behavior oF(m,t) in d<2 using the renormal-
sources was done in Reffl9]. In Ref. [20] the systematic ization group method. We do the same dior 2 in Sec. IV. In
renormalization group procedure for the computation of thesec. v, we rederive the results of Secs. Il and 1V, using an
average density and density-density correlation function inexplicit resummation of all diagrams giving the leading con-
kA—(J reaction was developed. In RdR1] renormaliza-  tribution to the average mass density in the limit of large
tion group analysis of thé+B—J reaction ind>2 was  time. Reasons for the failure of the Smoluchowski theory
used to study the effects of initial fluctuations on the |atethen become more transparent. In Sec. VI we elaborate on
time decay of particle densities. The renormalization groughe connections with weak turbulence. Finally, we conclude

technology developed by Peliti, and co-workeis8,20,2]  with a summary and discussion of open problems in Sec.
was used to compute the average mass distribution of clusy,

ters in the CCA model in the intermediate-mass range in
Ref.[7].

It turns out, however, that as far as the study of scaling
properties of one-point correlation functions in most
reaction-diffusion systems is concerned, the renormalization The problem of computing density correlation functions
group is not a vital tool. Consider, for example, a single-in d-dimensional stochastic processes can be reformulated as
species-annihilation modeéA+A—J. Once the renormal- an effective equilibrium problem ind(+ 1) dimensions with
ization of the effective reaction rate is understood, the corredhe help of the Doi-Zel'dovich-Ovchinnikov trick25]. One
density decay exponent can be obtained from simple dimercan then attempt to solve the problem using the powerful
sional argumentgl6]. Alternatively, one can use simple ran- methods of statistical field theory, in particular, those based
dom walk arguments or the Smoluchowski approximationon renormalization group ideas. Starting from the lattice ver-
(we refer to the case in which the reaction rate is replaced bgjon of the CCA model, we would like to derive the corre-
atime dependent reaction rate as the Smoluchowski approxéponding field theory and the Langevin equation obeyed by
mation [3,22] to obtain the correct values of decay expo- P(m,i,t), whereP(m,i,t)ddeis the number of particles

nents. A renormalized mean field theory or, alternatively, iy masses in the intervdim,m-+dm] in the volumedV
version of Smoluchowski’s theory can al m- - !
ersion of Smoluchowski's theory can also be used to co entered ak. It was shown in Ref]{7] that the problem of

pute the average mass distribution in the cluster-cluster ag-~ . . . S
gregation for intermediate masges]. inding all correlation functions of the local mass distribution

In the CCA model considered in this paper, it turns Outis equivalent to finding all moments of the following stochas-

o N o . tic integro-differential equation(stochastic Smoluchowski
that the stochastic fiele(m,x,t), describing the continuous equation:
limit of the local mass distribution, has a honzero anomalous

dimension ind<?2. The scaling exponent governing the de-

pendence of the average mass distributgm,t) on mass is
proportional to the anomalous dimension of the operator cor-
responding to the local mass distribution. As explained in +2iNEXDP(MXY), (D)
Sec. Il any approximation scheme which disregards this

anomaly(such a(:s the Smoltzt/:zhowsm app.roxm:f\mq)medl.cts', whereP* P=[Tdm'P(m—m’,%,t)P(m’,%.t) is a convolu-
that P(m,t) ~m” when m<t®<, for any dimension. This is . S . . . -

in contradiction with both the numerical resul® as well as tlonm term, §(3<,t)_ Is Gaussian \_Nh'te n0|_se, anNJ(x,.t)
the exact result in one dimensi¢B,6]. The full power of ~ =/odmPm.x,t) is the local particle density. We are inter-
renormalization group analysis has thus to be brought to beasted inP(m,t)=(P(m,x,t)), where(- - -) denotes averag-

I. CONSTANT KERNEL CLUSTER-CLUSTER
AGGREGATION AND MEAN FIELD ANALYSIS

T DA) P(m,X,t)=\P* P—2\N(X,t)P(m,X,t)
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ing with respect to the noisé. If the initial number of par- . m
ticles of different masses at different lattice sites are P(m,t):C—slz, (5)
independent Poisson random variables parametrized by the pt

initial average mass distributid®y(m), then the initial con- hereC i tant ang s th densit
" . . : - B . where C is a constant ang is the average mass density.
dition to be supplied with Eq(1) is P(x,m,0)=Pg(m). It is .. Equation(5) matches with the exact results obtained for the
easy to check that Eql) conserves the average mass den5|tyCCA model in one dimensiofs,6]
p=JmP(m)dm. _ o However, no exact solutions are available for the dimen-
As particles aggregate, the typical mass grows in time agjonsd>1. In the rest of the paper, we will be analyzing

o : : :
t%2 If we are interested in small masses, we dnlzeed to considggqs, (2) and(3) in d>1 using the dynamical renormalization
masses smaller than the typical masss p(Dt)™*. This can  group method. We will show that for small masses and 1
be achieved by considerimg/m, to be fixed ag— 0, where <d<2,

mg is the smallest mass &t 0. In this case, the first term on

the right hand side of Eq.l) is almost surely small com- . m eKR
pared to the other terms. Consequently, the small-mass be-  P(m,t)~ 3 Bl m<p(Dt)%2,  (6)
havior of the local mass distribution is described by the fol- p(D)"\ p(Dt)
lowing system of nonlinear stochastic partial differential 5
J v v . P(m,t) ~ — I(t/t)l( i )<1+ ! )
—_ - m,t)~ n n
Y DA) P(m,x,t) 2AN(X,t)P(m,x,t) »(D1)2 o bt, In(t/to)
+2iINEXHP(MX L), (2) for pDto<m<pDtin(t/ty). @)
P Here,to~A2/D, whereA is the lattice spacing.
(——DA N(X,t) = — AN2(X,t)+ 2i VA EX DN(X, 1). Before doing the renormalization group analysis, let us
dt analyze Eqgs(2) and (3) in the mean fieldweak coupling
(3 limit. Neglecting stochastic terms in the right hand side of

Egs.(2) and(3) and solving the resulting system of ordinary
Equations(2) and (3) demonstrate an interesting connec- differential equations, we obtain

tion between this model and the+ A— A model. The sto-

chastic fieldP can be identified withiN/dNy, whereNg is — No

the initial density. Indeed, differentiating E@®) with respect Nmr(D) = =5 ®)
. . 1+ Npht

to Np, and setting®= dN/JdNg, we obtain Eq(2). Therefore,

if the completeN, andt dependence of the mean density of

particles is known, then so is the time dependence of the Pue(t)= L_ (9
average mass distribution. But in practice, only the leading (14 NgAt)?

order time dependence of the mean den&ighich is inde- .

pendent ofNg) is known. Thus, at large timesP(t)~t~2, given that mean field

We are interested in the behavior®fm,t) in the limit of ~ theory is applicable. Relative corrections to the mean field
fixed m andt—o. We can then identify the particles with result are of the order afy(t)=\t/(Dt)¥2 Therefore mean
this fixed mass aB kind of particles and the remaining par- field theory is asymptotically exact oh>2 [27] and diverges
ticles asA kind of particles. Then, clearly, the study of Egs. with t if d<<2. Resummation of the most divergent terms in
(2) and(3) is equivalent to the study of a two-species reac-the weak coupling expansion & around the classical solu-
tion, tion is required and can be performed in the case at hand

using the formalism of the renormalization group. The de-
A tails of the computation are given in Sec. lll. Here, we would
A+A—A, like to demonstrate that accounting for the renormalization
(4) of the coupling constant alone does not yield the correct
N decay exponent as mentioned earlier. To the leading order in
A+B—(inert), e=2—d, the renormalization of the effective reaction rate
reduces to replacinyg in Egs.(2) and(3) with the renormal-

- _ — /2 . . .
in the limit when the concentration & particles is much 12€d valuexg=f(e)t” < and omitting stochastic termthe

smaller than that ofA particles. This two-species problem renormalized mean field approximatiorEliminating N(t)
has been studied id=1 for arbitrary diffusion rate$26]. from the resulting system of ordiniry differential equations,
Specializing the results of this paper to our case, we find thadne finds the following equation fd?(m,t):
P(m,t)~t~32 for t—w. Assuming that the large-time as- _ _
ymptotics ofs(m,t) is universal, we can restore thme de- aP _ dE (10)

-

pendence using dimensional analysis, to obtain at
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FIG. 1. Propagators and vertices of the effective theory, Eq. —2k4
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This implies thatP(m,t)~m° 9. In other words,P(m,t)

scales with time according to its physical dimension. As a ) <= === = <cemeee- + ;_27~ "

result it does not depend on mass. As we will show in Sec. -

lll, arguments leading to this conclusion are incorrect, as FIG. 2. Diagrammatic form of mean field equations fay av-
they disregard the possibility of the anomalous dimension okrage particle density,(b) average mass distribution(c)

the stochastic fieldp. NN-response function, an@) P P-response function.
H i H H n
IIl. RENORMALIZATION GROUP ANALYSIS a diagram wittm loops is proportional tg(t)". In the weak
OF STOCHASTIC AGGREGATION coupling regime the main contribution 8(m,t) and N(t)

o is, therefore, given by the sum of all tree diagrams, the first
The average mass distributid?(t) and average particle correction comes from summing all one-loop diagrams and
densityN(t) admit functional integral representations which SO on. It turns ouf20,3Q that the sum of all tree diagrams
can be obtained by applying the Martin-Siggia-Rose procegdives the mean field answers, E¢8) and (9). The expan-
dure[28] to Egs.(2) and(3) [equivalently see Eqg2)—(4) of ~ Sion in powers ofjo(t) is therefore the standard loop expan-
Ref.[7]]. We then obtain sion around solutions of mean field equations. It is obvious
that ind<2 the loop expansion is not very useful at large

R - - R - . times as lim_, .gq(t)=c0. Fortunately, the value of dimen-
<O(t)>:f DN(xX",t")DN(X",t")DP(x’,t")DP(X',t") sionless reaction rate properly renormalized to account for
o the buildup of interparticle correlations turns out to be of

X O(t)e SerlN:N.P.PT (11)  ordere=2—d for large times. This allows one to convert the

loop expansion into ar expansion using the perturbative
whereO(t) =N(x,t) or P(x,t) and renormalization group method. Such an expansion works

well for large times and will therefore yield all the informa-

t . . ~ tion we need about the behavior of the average mass distri-
Seﬁ:f d?%d7N(N—DAN)+P(P—DAP)+\(NN? bution in the strongly fluctuating regime. In computing loop

0 corrections to any order, there are generally an infinite num-

+2PPN+N2N2+ 2NPN P+ P2P?)] (12 ber of diagrams to sum. However these diagrams can be

resumanﬁd in p%rg if one introduces cIaNsticaIPLesponse func-
. . . . ~ = tionsGg,” andG, . Response functioG;~ (G ) is equal
s the eﬁgctlve action fur.wctlonal. He_"% a_ndN are the _re- to the sum of all tree diagrams with one outgoing and one
sponse fields. Perturbative e.xpan_5|onsl\b{t), P(m,t) in ingoing line of typesN (P). As was already mentioned,
powers ofA can now be obtained in the standard. way, seemean field densities Eq$8) and (9) are also equal to the
for example, Ref£29]. Feynman rulgs for' constructlng terms gums of tree diagrams with one outgoiNgor P line corre-
of these expansions are summarized in Fig. 1. Due to thgpondingly. One then simply has to associate incoming lines
nonrenormalization of the diffusion rate as well as the averyin mean field densities and propagator lines with mean
age mass density in the field theory, H42), in all that  fie|q response functions. Integral equations satisfied by clas-
follows, we use units in whicp=D=1. The average mass gjca| densities and response functions are presented in dia-
distribution P(m,t) is formally given by the sum of all dia- grammatic form in Fig. 2.
grams built out of blocks presented in Fig. 1 with one out- The solutions of the equations in FiggaRand 4b) co-
going punctuated lineR line). The contribution from each incide with Egs(8) and(9), as they should. The equations in
diagram is a function oi\Ngt and “bare” dimensionless Figs. Zc) and 2d) can also be solved with the result
reaction rategy(t)=\t/t%2 Unless we are interested in the NN op
small-time expansion d?(m,t), ANyt cannot be treated as a Gl (X2,t2;X1,t1) =Gy (X2,12:X1,11)
small parameter. Therefore, the contributions of all diagrams No(ty) )2
proportional to a given power @fy(t) and various powers of :(W> Go(Xo—Xq,to—ty),
ANt have to be summed up. A simple combinatorial argu- olts)
ment(see Ref[20] for detailg shows that the contribution of (13
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rence of random walks id<2. Reaction-rate renormaliza-
tion accounts for all fluctuation effects in the+A—A
model.

However, the CCA model is more complicated and inter-
esting due to the presencelmdundaryrelevant couplings.
To identify them, we use the following version of dimen-
sional analysis. Boundary coupling constants correspond to
vertices with no incoming lines. ABP interactions can be
neglected in the problem at hand, we are interested in bound-
ary vertices with at most onB line. Assume for simplicity
that d=2 (critical dimension. Assume also that the initial
densityNg=cc. This assumption is justified if one is inter-
ested in the large time-behavior of correlation functions in
FIG. 3. One-loop corrections to the mean field answer for averaggregation, ad, flows to infinity under renormalization

age mass distribution. group transformation to increasingly larger time scales, see
Ref. [16] for more details. Letl", 4(t), where «=0,1; 3

where G, is the Green’s function of the linear diffusion =012 ..., be thesimultaneous Green's function of the

equation. theory Eq.(12) with a P-lines andB N-lines with all exter-

Using the notion of mean field response functions and@l momenta equal to 0. Using E(L3), one can express
densities, one can easily classify all one-loop diagrams corfG.,s(t) in terms of corresponding vertex pawt, s(t) as
tributing to the average mass distribution. The result is prefollows:
sented in Fig. 3. A quick check shows that analytical expres-
sions corresponding to diagrami® and (iii) containing 1\ 98
primitive loops diverge ird=2, which is consistent with the G, B:(_> f drr2@tBy (7). (15)
fact that the upper critical dimension of the effective theory ’ t2 0 '

Eq. (12) is 2. Computing the relevant integrals dh=2—€
dimensions we find the following one-loop expression for

s Y As the physical dimension dB, 4(t) is (L) 2#~**, where
the average mass distribution: phy a,p(t) 1S (L)

V, 5(t)~t #2271 As aresult, Eq(15) converges at small
times for anya if B>0. If =0 anda=1, Eq. (15 di-

— Pol[1)? 1 1 verges logarithmically. This divergence can be regularized
P(t)= N2 ﬁ) + m WF(GJ using a small-time cutoff N, and leads to the renormal-
0 ization of the initial mass distributioR,. The latter plays the
role of the coupling associated with g.
X|1+0 NNot + (two—loop corrections, As a result of the discussed divergence, diagrams involv-

ing V1 o grow faster with time compared with diagrams with
(14 the same number of loops but with no subdiagrams contrib-

uting to renormalization oP,. Consequently, diagrams be-
where F(e)=(4/€)1— e/l2[(1+ €/2)?(1+ €/4)]. Equation longing to the former class have to be resummed exactly in
(14) can be used to determine the large-time asymptotics abrder to obtain the correct large-time behavior of the average

P(t) in the following way. The exact average mass distribu-mass distribution.

tion satisfies the Callan-Symanzik equation which we will We conclude that fluctuations in the stochastic aggrega-
derive below. Coefficients of this equation depend on the laviion lead to two effects: renormalization of the effective re-
of renormalization of all relevant couplings of the theory Eq.action rateand renormalization of the initial mass distribu-
(12). One relevant coupling is the effective reaction rate. Itstion. It follows that the renormalization of these two
renormalization is knowf18]. Below we will show that the couplings regularizes the perturbative expansiorP @i, t)
only other relevant coupling is the initial mass distribution to all orders.

Po. We will determine its renormalization law with one-loop  As it turns out, the renormalization &%, is solely respon-
precision, demanding that the expression Bd) be nons- sible for the Kang-Redner anomaly. In Sec. V we will ana-
ingular in the limit e—0 when expressed in terms of the lyze initial density renormalization by explicitly resumming
renormalized coupling constant and renormalized initialsmall-time divergences in the perturbative expansion for
mass distribution. This will determine the coefficients of thep(m,t). Now, we will show how it appears formally within

Callan-Symanzik equation up to terms of ordgy, where  the framework of the perturbative renormalization group

Or is the renormalized dimensionless reaction rate. SO'Ving'nethod_ We follow dynamica| renormalization group proce-

this equation we will be able to compute the decay exponendure described in Ref16].

of P(t) up to terms of ordek. Let us fix a reference timg>0. Expressior(14) evalu-
The dimensional analysis of effective vertex parts of theated att, is to be made finite by absorbing the divergences

theory Eq.(12) shows that the only relevabulk couplingis  appearing ag—0 into the renormalization of the reaction

the effective reaction rate. Its relevance is due to the recurate and the initial density.
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Let goz)\tg’z be the dimensionless “bare” reaction rate. where B(gg)= —2(d/dtp)gr is the beta function of the
As has been shown in R€f18], renormalized reaction rate theory Eq.(12) and
Or is related tog, via the following exact formula:

1 d _  Or )
(gR) Z Z__ 2 +O(gRagR 6) (22)
Y0 T
gr= (16)
1+ @ is the gamma function.
g* It is well known that at large times and id<d.=2,

solutions to Eq(21) are governed by nontrivial fixed points
Hereg* =2me[1+O(€)] is the nontrivial fixed point of the  (zerog of the B function. Differentiating Eq(16) with re-
renormalization group flow in the space of effective cou-spect tot, one finds thatﬁ(gR)=9R(9R—9*)- Hence,
plings of Eq. (12). Recall thatgo—A. Hence lim_.0r  f(gr) has a unique nontrivial fixed poigi=g* . It follows
=g*. It follows from the Callan-Symanzik equation that the t,om the Callan- -Symanzik equatiofEq. (21)] that P(t)
large-time behavior of thé’(m t) is also determined by the _;-d* t—o0, where
fixed point value of the effective reaction rag&. We there-

fore conclude that the limit6>0\ —c and\>0t—~ of d*=d—3y(g*). (23
the Kang-Redner model belong to the same universality class .
as claimed in the Introduction. We see that the scaling dimensionkfm,t) differs from its

Solving Eq.(16) with respect tay,, expanding the result physical dimension by a term proportional to the value of the
in powers ofgg, and substituting the expansion into Eqg. y function at the fixed point. This term is called the anoma-
(14), we obtain the average mass distribution at tipas a  lous dimension of the fieldP. The physical reason for the
power series irgg: presence of the anomalous dimension is the renormalization
of the initial mass distribution by small time fluctuations.

As g* ~ ¢, the substitution of thgg expansion ofy into
Eq. (23 yields thee expansion ford*. Using Eq.(22) we

_ P
P(to)=— 5 1——[1+0<g )1gr+O(g3) |.
N3 rlo g* X
(17) find that

o9

* __ 1 2
As expected, the ordeys term in Eq.(17) is still singular at d*=d+ze+0O(e). (24)
e=0. To cancel the remaining divergences we have to intro-
duce a renormalized initial mass distributie¥ : Finally, one can restore the dependence dP(m,t) using a
dimensional argument. The result is
Pr=Z(gr.t0.€)Po, (18) B 1| o
whereZ is a power series igg with coefficients chosen in P(m,t)=A( E)t_d N ' (25

such a way, that the average mass density

=y _ =y where e g= e+ 0(€?) is equal to twice the anomalous di-
P(t.0r:Pr:t0)=Z(gr to,€)P(LAo,Pos€), (19 mension of the stochastic fieRl

when expressed in terms d¥g,gr, is nonsingular ate Note that ind=1, exg=1 andP(m,t)~m?*, which coin-
=0. Substituting Eq(17) into Eq. (19) we find that cides with the exact answgs]. However, at the moment we
do not have reasons to believe, that higher ordeorrec-
Or tions to our answer foexr vanish identically for any & e
Z=1+ g—+O(gR) (20) =<1. Equation(24) implies that the anomalous dimension of

P vanishes atl.=2. Yet, it follows from the general theory
in order forE(t) to be nonsingular at the one-loop level. of the perturbative renormalization group that traces of the
he anomalous dependence Bfm,t) on mass id<<2 must be

Now we can derive the Callan-Symanzik equation. T
present at the critical dimension as well. We analyze the
fact thatP(t No.Pg,€) does not depend on the referenceKang Redner anomaly ii=2 in Sec. IV and compare

time to leads to the following equation fd?(Py): renormalization group predictions with the conclusions of
the direct numerical simulations of the system of diffusing-
to g [z 1p(p )= aggregating point particles on the two-dimensional lattice.

Noticing thatE(t) =t5d(PR/N§)<I>(t/to,gR), Where® is a IV. KANG-REDNER ANOMALY IN TWO DIMENSIONS

dimensionless function, one can convert the above condition It is well known that anomalies id.— € dimensions lead
into the Callan-Symanzik equation f§(t); to logarithmic corrections to the mean field theory answers in
1 1 d=d.. The Kang-Redner anomaly is not an exception. The
J =y _ small-mass behavior of the average mass distribution in two
Zﬁ(gR)agR+d 2 ¥(9r) |P(t.0r,Pr.t) =0, dimensions can be easily obtained by solving the Callan-
(21 Symanzik equatiofsee Eq.21)]. Note that
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32

1 ' -
,3(9)|d=2=§921 3t mo2 X 9
m=3 O B’HE‘
(26) 28 ‘Ba' ]
! 2 26 | =t gl
Y9g-2=~ 5_9[1+0(g")]. - ECSI
T =8 ¢
SR 24 r =B _x,.x‘x'x 1
Solving Eq.(21) with coefficients given by Eq26) and the g 22} ,E.Bﬂ'i’x_xxxx . ot
initial condition &, gET e e 1
P(to)=constx ——[1+0(gr)] (27) L6 o e -
t : T
R0 14 ;+..,+»+v-*"*+ 1
produced by the mean field theory, we find that 12 s
100 1000
|n(t/to) t

P(t)=constx [1+0In(t/ity)]. (29

2 _
t FIG. 4. The variation oP(m,t)t2 with t is shown form=1,2,
and 4 on a semilog scale. The variation is linear, implying that

Such a behavior OP(M,t) = fixeq N wo dimensions was P(m,t)=c(m)In(t)/t?, wherec(m) is some mass-dependent func-
originally seen by Kang and Redner in numerical S|mulat|onstion

[3]. We have now shown that E€R8) can be obtained as a

result of systematic renormalization group computation. = . _

Analyzing their model in two dimensions, Kang and Redner4, We show the variation dP(m,t) with t for fixed smallm.
noticed thatP(m,t) is a slowly varying(increasing, as sug- It is seen thatP(m,t) =c(m)In(t)/t?>, wherec(m) is some
gested by Fig. 2 of Ref3]) function of mass. We can now function of the massn. This is in excellent agreement with
quantify this observation by computing the mass dependendeq. (28). To determinec(m), we studied the variation of
of the average mass distribution. th=d., direct dimen- P(m,t)/P(1t) with the massm (see Fig. 5. We see that
sional arguments cannot be used to restore the mass depeim)~In(m), thus confirming Eq(30).

dence of Eq(28) due to the explicit dependence B{m,t)

on the lattice cutoff. Instead let us analyze Eg5) for V. KANG-REDNER ANOMALY VIA EXPLICIT
P(m,t) in the limit e—+0. Near e=0, the amplitude RESUMMATION OF BOUNDARY DIVERGENCES

— 72 . . . .
Ale)~e " Expan(_jmg the right hand _Sld? of Eq_ZS) n In this section we will derive Eq(25) without using the
powers ofe and using the fact tha(m,t;€) is nonsingular  tormajism of the renormalization group. Instead, we will
at e=0 as a function of renormalized parameters, we finGyentity the principal set of diagrams contributing to the

that large-time limit ofﬁ(m,t) and derive a simple integral equa-
_ 1 ) tion satisfied by the sum of these diagrams.
P(m,t)= Z{Cy[In(t/to) ]+ Caln(t/to)In(m/ty) Additional divergences in the terms of the perturbative
t expansion of the average mass distribution discussed in Sec.
+Ca[In(Mite) 12 [1+O(n(t/ty))]. (29 IV are actually due to the quadratic singularity of the mean
We are interested i_rﬁ(m,t) in the limit t—oo, m="fixed. 26 ' 0.309 In(x) + 1.0 -~
Time dependence d#(m,t) is given by Eq.(28). Therefore, 24t e
coefficientC, in Eq. (29) is 0. Hence .| e
— In(t/tg)In(m/t ~ «&’w
P(m,t)zconsuw[kr O(1/In(t/ty))]. = 27 ++M 1
=
(30) S 1.8 | _'_,ﬂ‘*** 4
g 1.6 »F’**‘ 1
Note that Eq.(30) is valid for m<M(t), where M(t) A o
~t/In(t/ty) is the typical mass. lim~M(t), then P(m,t) 14 ¢ ’*/"' ]
~[In(titx)/t]>, which coincides with the answer for |l o i
P(M,t)|m-m( in the intermediate mass rangé|.

To check our analytical results, E428) and(30), we did 1 1’/
a numerical simulation of the system on a two-dimensional
lattice. For the sake of computational efficiency, we chose to
work in the limit A — o so that a lattice site can hold utmost  FIG. 5. The smalim behavior ofP(m,t)/P(1t) is shown on a
one particle. The lattice was chosen to be a square lattice @kmilog plot. The variation is linear, implying tha{m)~ In(m)
size 300x 3000 with periodic boundary conditions. In Fig. with c¢(m) as defined in the caption of Fig. 4.

10 100
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field expression Eq(9) for the average mass distribution at :DDDD:DD:X _

Ng=9, t=0. Let us illustrate this statement with the ex- T messsssee x
ample of diagrani) of Fig. 3. Assuming for simplicity that

d=2 and denoting ultraviolet cutoff bxt, we find that the @ # *--g@ﬁ'ﬂmn)(

most divergent contribution coming from this diagram is

Po

AN,
iy~ ——ggIn (A ” dr=——[1+O(1ANgH)]. j
2 mN2N2 ot t 1+ANg7
w o s=X oL

SettingNy=< under the sign of integration is clearly impos-

sible, as the resulting integral would diverge. Direct compu-
tation of Eq.(31) shows that @ ( F o )
| Po_, ( ! )I (ANt)[ 1+ O(LMNgt)].
N~ ———=In n
O 2mengt? ° ° + ( % +)

32 (@

We see thatl ;) is proportional to Ing?, not In¢) as one FIG. 6. (a) Schwinger-Dyson equation fdi(t). Perturbative
would have deduced from the simple loop counting. Theexpansion of the polarization operatd in the number of loops,

additional singularity is due to the fact th&yg|y .. (¢ Inthe order of exact vertex parts.

~t72. (Recall thatNye[y,-~t~*. As aresult, divergences |¢ ;s out(see belowthat at large times
att=0 are absent in the field theory 8f+A—0 reaction)
The additional boundary singular terms are generally T(t)= 1

“[f 10
present in all Feynman integrals contributingRém,t) and 2
have to be resummed to all orders of the perturbation theory
to get the correct large-time asymptotics of the average massolving Eq.(36) with TI(t) g|ven by Eq.(37), we find that
distribution. P(t)= 7(t)/t2~tl "2+ <2+0()] Thus, we have been able to
Let II(t,,t;) be the exact zero-momentum vertex func- rederive Eq(24) without any reference to a renormalization

tion of type PP—the sum of all one-particle irreducible dia- 9roup.

grams contributing to th®P response function divided by Before we turn to the derivation of E¢37), we would
the propagators corresponding to external lines. Thélke to demonstrate that solving integral equation 834) is

Schwinger-Dyson equation for the exact average mass d|str\ndeeOl equivalent to summing Ieadmg boundary singular

bution reads terms in the perturbative expansionRft) to all orders. All
divergences at=0,Ny=c0 can be regularized by setting the
lower limit of integration in the integral in the right hand side

P(t)= PMF(t)+ J dtZJ dtaI1(tz,t )P(tl) (33 of Eq. (34) equal to 1XNy. The resulting equation,

[1+0(14)]. (37)

Equation(33) is most easily derived using the formalism of p(H)=1+ ;ft d_t,](tl) (38)

Feynman diagrams. Its diagrammatic representation is given 1Ngt 11
in Fig. 6(@. We know that in two dimension®(t)~t~ 2.
Therefore, nead=2, the functionn(t):E(t))\t2 is slowly
varying. The following simplified version of Eq33) is
therefore valid to the leading order in

can be solved using the method of consecutive approxima-
tions. Settingn(t) = no(t) + 71(t) + 7o(t)+ - - - and treating

the integral in the right hand side of E@®8) perturbatively,

we find thatzy(t)=1 and

t
”(t)=1+fodtlmt1)7’(tl)’ (34 nn(t)=:—|(gln()\Not)), n=12,.... (39

where
Note that#4(t) is equal to the one-loop boundary singular

term, 7,(t) is the two-loop boundary singular term, and so
_q2
()=t fo t_zn(t'tl)' (39 on. Summing the resulting series far one confirms our

! main result thatyn(t)~t<2. One loop-boundary singularity
Differentiating Eq.(34) with respect to time, we find that leads to mass-dependent logarithmic corrections to the aver-

n(t) satisfies the following differential equation: age mass distribution. This is most easily seen by expanding

Eq. (25) in powers ofe. These corrections, which were origi-
97 nally observed in Ref7], motivated to a certain extent the
dt (O=TO (V). (36) present investigation.
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The knowledge of the first term in theexpansion of the It remains to verify that two- and higher-loop diagrams
decay exponent o#(t) leads to a good approximation of the contribute only to higher order terms in tleexpansion of
average mass distribution, given thain(\Nqgt)~1, but TII(t). Ordere 2 contributions from diagrams containing
€’In(\Ngt)<1. If the latter condition breaks down, we need only primitive loops cancel as explained above. Ordet-
to know the expansion of the polarization operdib{t) to  contributions from diagrams with two primitive loops and
second order ire and modify Eq.(34) by including correc- two-loop diagrams with one primitive loop are accounted for
tions proportional to the derivative(t) [which account for by the one-loop renormalization of the coupling constant in
the fact thaty(t) is not constant one-loop diagrams. Hence nontrivial corrections to the polar-

We will now derive Eq.(37) by computinglI(t) to the ization operator come only from two-loop diagrams contain-
first order ine using one-loop diagrams and verifying that ing no primitive loops and nonsingular parts of all other
higher-loop diagrams lead to terms of ordérand higher. If ~ two-loop diagrams. Simple counting shows that the contribu-
the mean field theory for the average mass distribution wation from such diagrams tolI(t) is proportional to
exact, operatoFl would have been identically equal to zero. [ (Ag(t)t?)"]/e("~ 2t~ €?/t. A similar argument shows that
Consequently only loop diagrams contribute Hq(t,,t;). n-loop diagrams contribute tB(t) at the ordere™ only.

The one-loop diagrams are shown in Figb)6 The compu- Now it is very easy to characterize the class of diagrams
tation of corresponding Feynman integrals is straightforwardgiving the leading contribution to the expansion offI(t).
After integration with respect to, we find their respective The statistics oN(t) is strongly non-Gaussian. Yet, the main

contributions tolI(t): contribution to the polarization operatdf(t) comes from
the diagrams proportional to the first and the second cumu-
—8\t? (1+2€) lants of the stochastic fieltll(x,t) only. Non-Gaussian ef-
;) (1) = (40) fects are due to the fact that these cumulants are connected to

(8m)¥2%t e(1+ €el2)? S
the PP propagator via exact vertices.
grte2 1 It is also possible to derive formula E@®8) without using
i (14 el2)’ (41)  the formalism of the renormalization group. Instead, one can
(8m)™1 solve EQq.(36) directly using the one-loop expression for the
polarization operatofI(t) in two dimensions. The latter can
(42) be obtained by setting in Eq43) d=2 and replacing the
bare reaction rata with the renormalized reaction rate in
two dimensionsAg(t) =[47/In(t/ty) [ 1+O(1/In(t/ty))]. The
Note that individual contribution from diagrant® and presented expression fhg(t) is easy to compute by explicit
(i) are 1k times bigger than the contribution from diagram resummation of all diagrams contributing to the renormaliza-
(iii ), which does not contain primitive loops. Yet, terms of tion of the bare reaction rate, see Rgf0] for details. The
order e ! cancel upon addindl;,(t) andI1;(t) leaving  resulting equation fom(t)=t?P(t) is
terms of order up ta’—same as the leading order of terms
of Iliy(t). This cancellation explains why we had to ac-
count for an apparently subleading contribution of diagram
(iii ) to the perturbative expansion bf(t). Such a cancella-
tion is not accidental and happens at all orders of loop exThe solution is 7(t)~In(t/ty). Correspondingly, P(t)
pansion: diagramg) and (ii) can be interpreted as the first ~In(t/to)/t?, which coincides with Eq(28).
two terms in thee expansion of the first term in the cumulant

expansion ofll(t,,t;), see Fig. €&). This term corresponds

I ip(t) =

H B _8)\t€/2 1
Giny(H = (8m)%2% (1+€l2)(2+¢€l2)

. 1
n(t)= tin(t/ty) 7(t). (44)

VI. KANG-REDNER ANOMALY AND CORRECTIONS TO

to an exact total particle density(t) connected to th&P THE KOLMOGOROV PARTICLE SPECTRUM
propagator via an exa®NP vertex. The vertex is of the _ ) —
order of the fixed point coupling* ~ €, while the exact Now we will show that the mean field resuR(m,t)

density is of the ordee 2 [20]. Therefore the contribution of ~m° can be interpreted as a constant filolmogoroy
the term in question tdI(t,,t;) is of order 1, which is solution of the Smoluchowski equation. We will then inter-
reflected in the cancellation of the terms of the lowest ordepret the Kang-Redner anomaly as a breakdown of Kolmog-
in € in every term of its loop expansion. orov scaling due to strong flux fluctuations developing at
Adding together Eqs(40)—(42), we find that large times.
Averaging Eqgs(2) and (3) with respect to noise one gets

At _ the following relation between one- and two-point mass dis-
I(t)= m[1+ O(e)]+two-loop corrections. tribution functions:
a
“3 XP)
_ ——=—\(PN), (45)
Larget behavior oflI(t) can be obtained from Eq43) at

by replacing the bare reaction ratewith the renormalized
reaction rate\g(t) ~2met~ <4 t—o. The result does indeed IN) _ EA<N2> 46)
coincide with Eq.(37). ot 2 '
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Let us look for solutions of Eq46) having the form VIl. CONCLUSION

ﬁ(t) In the present paper we have shown that the problem of
——J(u,t), (47)  cluster-cluster aggregation <2 can be effectively ana-
M(1) lyzed using the renormalization group method. We have
demonstrated that the dependence of the average mass dis-
tribution on mass is determined by the anomalous dimension
of the stochastic fieldP (local mass distribution This
anomaly is due to the relevance of boundary Q) fluctua-

5(m,t)=

where w=m/M(t). Recall thatM(t)=N"1 is the typical
mass. The new dependent varialiléas a simple physical
meaningf§du’J(un’,t) is the average number of particles

with masses less thaM(t)u contained in the volume , =
tions for the large-time asymptotics &f(m,t). In that re-

N1
N"(). spect the phenomenon of the Kang-Redner anomaly re-

At times much less thaty=(\) %%, the relative fluctua- IR
. . ' sembles the phenomenon of boundary phase transition in
tions of local density are small. As a result, mean field theory

. . _ - equilibrium statistical mechanics, see Rgf] for a review.
's applicable andIN)=~(J)(N). As a result, Eq(45) sim Formally, the anomalous dimension of the local mass distri-

lifies to
P bution is a consequence of the nontriviality of théunction
ENAN EN| of the effective field theory Eq12). The fact thaty(g) #0
7t ; = @- (48) is ultimately responsible for the breakdown of the Smolu-

chowski theory(or equivalently, the renormalized mean field

Therefore,J/u is a locally conserved quantity with flux theory is applied to the model at hand. At present, renormal-
equal to (- J). Note that)>0. Therefore the cascadedfy ~ ization group analysis seems to be the only theoretical
is inversein the terminology of turbulence: its flux is di- method of studying the problem of cluster-cluster aggrega-
rected towards the small masses. We see that self-simildion in d>1. This is not quite satisfactory, as the analysis is
solutions of Eq(46) correspond to constant flux solutions of essentially perturbative in nature. However, our theoretical
Eqg. (48). The latter is justl=const. Constant flux solutions predictions concerning the behavior of the average mass dis-
of kinetic equations are called Kolmogorov solutions in thetributions at small masses in two dimensions have been un-
theory of weak turbulence, see R¢R4] for details. We  ambiguously confirmed numerically.
therefore conclude that in the mean field approximation In Sec. VI we have shown that there is a relation between
_ cluster-cluster aggregation and the theory of weak turbu-
(PY(m,t)= &Mekolm, (49) lence. In particulgr, we demonstrated thgt the Kang-Redner
M (t) anomaly can be interpreted as a correction to the Kolmog-
orov spectrum of particles in mass space. However, we must
whereey, =0 is the exponent, which determines the Kol- stress that the analogy between our model and the phenom-
mogorov scaling of the average mass distribution. Note thagnon of turbulence must be taken with a pinch of salt: while
the fluxJ also has a meaning of dimensionless particle denthe cascade of the conserved quantity in our model happens
sity (the number of particles in the volumié¢™ 1), which is  along the mass axis only, conserved quantitesh as en-
an obvious integral of motion. ergy or enstrophyin more traditional turbulent systems flow
The fact that)=const means that particles are equiparti-through the scales of the physical space.
tioned between the system’s degrees of freedom and par- The method of dynamical renormalization group devel-
ticles’ flux is identically equal to zero. The characteristic fea-oped in the context of the model at hand can be applied to
ture of the state Eq(49) of our system is therefore the other nonequilibrium particle systems as well. In particular,
presence of nonzero constant flux of one integral of motioRne problem of cluster-cluster aggregation with annihilation
and the equartltlon of the other. Similar kind of behavior ¢ particles can be solved using techniques similar to those
has been observed in models of turbulent advedir outlined in this papef32]. This latter problem is related to

~ We know, however, that the mean field approximation isthe computation of the domain wall persistence exponent for
invalid in the limit of large times, if the dimension is or less e one-dimensionaj-state Potts moddB2).

because of strong fluctuations of local particle density. Using
results of the previous sections one can interpret the Kang-
Ect)ar(]j_ner anomaly as the anomaly in the constant flux condi- ACKNOWLEDGMENTS
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