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Kang-Redner small-mass anomaly in cluster-cluster aggregation
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The large-time small-mass asymptotic behavior of the average mass distributionP̄(m,t) is studied in a
d-dimensional system of diffusing aggregating particles for 1<d<2. By means of both a renormalization
group computation as well as a direct resummation of leading terms in the small-reaction-rate expansion of the

average mass distribution, it is shown thatP̄(m,t);(1/td)(m1/d/At)eKR for m!td/2, whereeKR5e1O(e2) and

e522d. In two dimensions, it is shown thatP̄(m,t); ln(m)ln(t)/t2 for m!t/ ln(t). Numerical simulations in
two dimensions supporting the analytical results are also presented.
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I. INTRODUCTION

Reaction-diffusion systems in low dimensions provide
excellent testing ground for developing our understanding
the fluctuation effects in complex systems far from equil
rium. A great deal of information, both numerical and an
lytical, has been gathered over the past 20 years to show
the evolution of statistical properties in simple reactio
diffusion systems in low dimensions is anomalous, in
sense that it does not follow the corresponding mean fi
equations~see Ref.@1# for a short review!. In low enough
dimensions, in the instances where an exact solution is la
ing, there are no formal methods by which the expone
characterizing the different physical quantities may be ca
lated. The renormalization group method~see Ref.@2# for a
review! provides the only systematic way to calculate the
exponents and thus understand fluctuation-dominated k
ics in reaction-diffusion systems. In this paper, we consi
the model of irreversible aggregation of diffusing, mass

particles Ai1Aj→
l

Ai 1 j , in dimensions 1<d<2, and use
the renormalization group method to calculate the sm
mass (m!td/2) behavior of P̄(m,t), the mean density o
particles of massm at time t. As we explain later in this
section, this problem of determiningP̄(m,t) requires using
the full power of the renormalization-group method. This
unlike many other problems where just considering the r
equations with a renomalized reaction ratel is enough to
obtain the right answer.

We now give a more precise definition of the cluste

cluster aggregation~CCA! modelAi1Aj→
l

Ai 1 j and review
earlier relevant results. Consider ad-dimensional lattice and
particles that possess a positive mass. Given a configura
of particles on this lattice, the system evolves in time via
following microscopic moves:~i! With rateD, each particle
hops to a nearest neighbor, and~ii ! with ratel, two particles
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on the same lattice site aggregate together to form a
particle whose mass is the sum of masses of the two c
stituent particles. As time increases, the number of partic
decreases due to collisions and ultimately whent→`, all
particles coagulate together to form one massive aggreg
However, at finite times there is a well defined average m

distributionP̄(m,t), which is of interest to determine. It wil
be shown later@see the text following Eq.~16!# that the large
time limit of this model is the same as the large-l limit. The
l→` limit was studied numerically by Kang and Redner

one and two dimensions@3#. It was shown thatP̄(m,t) has
the scaling formP̄(m,t)5t2df (mt2d/2), whered<2 is the
dimension. The two exponents are easily determined fr
the two conditions*mP̄(m)dm;t0 ~mass conservation! and
* P̄(m)dm;t2d/2 ~recurrence of random walks! @4#. The
small-mass behavior ofP̄(m,t) can be obtained by knowing
the small-x behavior of the scaling functionf (x). On the
basis of numerical simulations it was conjectured in Ref.@3#
that f (x);x(22d)/d. In one dimension, the model can b
solved exactly@5,6#; it was shown thatf (x);x or equiva-
lently P̄(m,t);mt23/2 for m!At. The one-dimensional so
lution uses the property of ordering of particles on a line a
is not generalizable to higher dimensions. In two dimensio
f (x) was seen numerically to increase withx for smallx @3#.
Also, in two dimensions, the scaling function could be det
mined in the limit of fixedx for t→`, wherex5mln(t)/t. In
this case it was shown@7# that P̄(m,t)5t22ln2(t)e2x for x
! ln1/2(t) and u ln(x)u!uln(t)u. This result however, become
incorrect in the limit whenm is fixed ast→`.

In this paper, we computeP̄(m,t) in 1<d<2 in the limit
t→`,m/m05fixed, wherem0 is the mass of the lightes
particle att50. We show thatP̄(m,t);(1/td)(m1/d/At)eKR

for m!td/2, whereeKR5e1O(e2) ande522d. In two di-
mensions, it is shown thatP̄(m,t); ln(m)ln(t)/t2 for m
!t/ ln(t). These results provide a theoretical basis to the
sults obtained by numerical methods in Ref.@3#.

The CCA model may also be considered to be a spe
case of the more general model in which the aggrega
kernel is mass dependent. For a review of results on the
©2002 The American Physical Society18-1
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equation approach to this problem, see Refs.@8,9#. The de-

pendence ofP̄(m,t) on m in one dimension in this more
general model has also been studied@10#. In this paper, we
will restrict ourselves to the aggregation kernel which
mass independent; i.e., the ratesl andD are independent o
mass. When the mass is ignored andl→`, the CCA model
reduces to the well-studiedA1A→A model @11#. The CCA
model and its variants also find application in a large num
of physical systems including colloidal suspensions@12#, ir-
reversible polymerization@13#, aerosols and cloud formatio
@13#, river networks@14#, and coarsening phenomena@15#.

Field theoretic methods have been previously used
study complex systems far from equilibrium~see Ref.@16#
for a review!. We briefly review results relevant to reactio
diffusion systems. In some earlier works@17,18#, the effec-
tive reaction rate and the decay exponent of the average
ticle density were computed for theA1A→A(B) model.
The renormalization group study of the same model w
sources was done in Ref.@19#. In Ref. @20# the systematic
renormalization group procedure for the computation of
average density and density-density correlation function
kA→B reaction was developed. In Ref.@21# renormaliza-
tion group analysis of theA1B→B reaction ind.2 was
used to study the effects of initial fluctuations on the la
time decay of particle densities. The renormalization gro
technology developed by Peliti, and co-workers@18,20,21#
was used to compute the average mass distribution of c
ters in the CCA model in the intermediate-mass range
Ref. @7#.

It turns out, however, that as far as the study of scal
properties of one-point correlation functions in mo
reaction-diffusion systems is concerned, the renormaliza
group is not a vital tool. Consider, for example, a sing
species-annihilation modelA1A→B. Once the renormal-
ization of the effective reaction rate is understood, the cor
density decay exponent can be obtained from simple dim
sional arguments@16#. Alternatively, one can use simple ran
dom walk arguments or the Smoluchowski approximat
~we refer to the case in which the reaction rate is replaced
a time dependent reaction rate as the Smoluchowski app
mation! @3,22# to obtain the correct values of decay exp
nents. A renormalized mean field theory or, alternatively
version of Smoluchowski’s theory can also be used to co
pute the average mass distribution in the cluster-cluster
gregation for intermediate masses@23#.

In the CCA model considered in this paper, it turns o
that the stochastic fieldP(m,xW ,t), describing the continuou
limit of the local mass distribution, has a nonzero anomal
dimension ind,2. The scaling exponent governing the d
pendence of the average mass distributionP̄(m,t) on mass is
proportional to the anomalous dimension of the operator c
responding to the local mass distribution. As explained
Sec. II any approximation scheme which disregards
anomaly~such as the Smoluchowski approximation! predicts
that P̄(m,t);m0 when m!td/2, for any dimension. This is
in contradiction with both the numerical results@3# as well as
the exact result in one dimension@5,6#. The full power of
renormalization group analysis has thus to be brought to b
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in order to compute the anomalous dimension ofP(m,xW ,t) in
the form of thee522d expansion. Since the peculiarity i
the small-mass distribution of cluster-cluster aggregation w
first discussed in Ref.@3# we refer to this as theKang-Redner
anomaly.

In addition to the calculation ofP̄(m,t), we found many
similarities between the problem of cluster-cluster aggre
tion and the problem of weak turbulence~see Ref.@24# for a
review on weak turbulence!. We elaborate on this connectio
in Sec. VI, where the Kang-Redner anomaly is interpreted
a violation of the Kolmogorov~constant flux! spectrum of
particles in mass space due to strong flux fluctuations.

The rest of the paper is organized as follows. Section
contains a discussion of the stochastic integro-differen
equation satisfied byP(m,xW ,t). The mean field results, a
well as the reasons for their failure in low dimensions a
also included. In Sec. III, we analyze the large-tim
asymptotic behavior ofP̄(m,t) in d,2 using the renormal-
ization group method. We do the same ford52 in Sec. IV. In
Sec. V, we rederive the results of Secs. III and IV, using
explicit resummation of all diagrams giving the leading co
tribution to the average mass density in the limit of lar
time. Reasons for the failure of the Smoluchowski theo
then become more transparent. In Sec. VI we elaborate
the connections with weak turbulence. Finally, we conclu
with a summary and discussion of open problems in S
VII.

II. CONSTANT KERNEL CLUSTER-CLUSTER
AGGREGATION AND MEAN FIELD ANALYSIS

The problem of computing density correlation functio
in d-dimensional stochastic processes can be reformulate
an effective equilibrium problem in (d11) dimensions with
the help of the Doi-Zel’dovich-Ovchinnikov trick@25#. One
can then attempt to solve the problem using the powe
methods of statistical field theory, in particular, those ba
on renormalization group ideas. Starting from the lattice v
sion of the CCA model, we would like to derive the corr
sponding field theory and the Langevin equation obeyed
P(m,xW ,t), whereP(m,xW ,t)dmdV is the number of particles
with masses in the interval@m,m1dm# in the volumedV

centered atxW . It was shown in Ref.@7# that the problem of
finding all correlation functions of the local mass distributio
is equivalent to finding all moments of the following stocha
tic integro-differential equation~stochastic Smoluchowsk
equation!:

S ]

]t
2DD D P~m,xW ,t !5lP* P22lN~xW ,t !P~m,xW ,t !

12iAlj~xW ,t !P~m,xW ,t !, ~1!

whereP* P5*0
mdm8P(m2m8,xW ,t)P(m8,xW ,t) is a convolu-

tion term, j(xW ,t) is Gaussian white noise, andN(xW ,t)
5*0

`dmP̄(m,xW ,t) is the local particle density. We are inte

ested inP̄(m,t)5^P(m,xW ,t)&, where^•••& denotes averag
8-2
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ing with respect to the noisej. If the initial number of par-
ticles of different masses at different lattice sites a
independent Poisson random variables parametrized by
initial average mass distributionP0(m), then the initial con-
dition to be supplied with Eq.~1! is P(xW ,m,0)5P0(m). It is
easy to check that Eq.~1! conserves the average mass dens
r5*mP̄(m)dm.

As particles aggregate, the typical mass grows in time
td/2. If we are interested in small masses, we need to cons
masses smaller than the typical mass,m!r(Dt)d/2. This can
be achieved by consideringm/m0 to be fixed ast→`, where
m0 is the smallest mass att50. In this case, the first term o
the right hand side of Eq.~1! is almost surely small com
pared to the other terms. Consequently, the small-mass
havior of the local mass distribution is described by the f
lowing system of nonlinear stochastic partial different
equations:

S ]

]t
2DD D P~m,xW ,t !522lN~xW ,t !P~m,xW ,t !

12iAlj~xW ,t !P~m,xW ,t !, ~2!

S ]

]t
2DD DN~xW ,t !52lN2~xW ,t !12iAlj~xW ,t !N~xW ,t !.

~3!

Equations~2! and ~3! demonstrate an interesting conne
tion between this model and theA1A→A model. The sto-
chastic fieldP can be identified with]N/]N0, whereN0 is
the initial density. Indeed, differentiating Eq.~3! with respect
to N0, and settingP5]N/]N0, we obtain Eq.~2!. Therefore,
if the completeN0 and t dependence of the mean density
particles is known, then so is the time dependence of
average mass distribution. But in practice, only the lead
order time dependence of the mean density~which is inde-
pendent ofN0) is known.

We are interested in the behavior ofP̄(m,t) in the limit of
fixed m and t→`. We can then identify the particles wit
this fixed mass asB kind of particles and the remaining pa
ticles asA kind of particles. Then, clearly, the study of Eq
~2! and ~3! is equivalent to the study of a two-species rea
tion,

A1A→
l

A,
~4!

A1B→
l

~ inert!,

in the limit when the concentration ofB particles is much
smaller than that ofA particles. This two-species problem
has been studied ind51 for arbitrary diffusion rates@26#.
Specializing the results of this paper to our case, we find
P̄(m,t);t23/2 for t→`. Assuming that the large-time as
ymptotics of P̄(m,t) is universal, we can restore them de-
pendence using dimensional analysis, to obtain
06611
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P̄~m,t !5C
m

rt3/2
, ~5!

where C is a constant andr is the average mass densit
Equation~5! matches with the exact results obtained for t
CCA model in one dimension@5,6#.

However, no exact solutions are available for the dime
sions d.1. In the rest of the paper, we will be analyzin
Eqs.~2! and~3! in d.1 using the dynamical renormalizatio
group method. We will show that for small masses and
<d,2,

P̄~m,t !;
1

r~Dt !d S m

r~Dt !d/2D eKR

, m!r~Dt !d/2, ~6!

whereeKR5e1O(e2) ande522d. If d52,

P~m,t !;
1

r~Dt !2
ln~ t/t0!lnS m

rDt0
D S 11

1

ln~ t/t0! D
for rDt0!m!rDt ln~ t/t0!. ~7!

Here,t0;D2/D, whereD is the lattice spacing.
Before doing the renormalization group analysis, let

analyze Eqs.~2! and ~3! in the mean field~weak coupling!
limit. Neglecting stochastic terms in the right hand side
Eqs.~2! and~3! and solving the resulting system of ordina
differential equations, we obtain

N̄MF~ t !5
N0

11N0lt
, ~8!

P̄MF~ t !5
P0

~11N0lt !2
. ~9!

Thus, at large times,P̄(t);t22, given that mean field
theory is applicable. Relative corrections to the mean fi
result are of the order ofg0(t)5lt/(Dt)d/2. Therefore mean
field theory is asymptotically exact ind.2 @27# and diverges
with t if d,2. Resummation of the most divergent terms
the weak coupling expansion ofP̄ around the classical solu
tion is required and can be performed in the case at h
using the formalism of the renormalization group. The d
tails of the computation are given in Sec. III. Here, we wou
like to demonstrate that accounting for the renormalizat
of the coupling constant alone does not yield the corr
decay exponent as mentioned earlier. To the leading orde
e522d, the renormalization of the effective reaction ra
reduces to replacingl in Eqs.~2! and~3! with the renormal-
ized valuelR5 f (e)t2e/2 and omitting stochastic terms~the
renormalized mean field approximation!. Eliminating N̄(t)
from the resulting system of ordinary differential equation
one finds the following equation forP̄(m,t):

] P̄

]t
52d

P̄

t
. ~10!
8-3
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This implies thatP̄(m,t);m0t2d. In other words,P̄(m,t)
scales with time according to its physical dimension. As
result it does not depend on mass. As we will show in S
III, arguments leading to this conclusion are incorrect,
they disregard the possibility of the anomalous dimension
the stochastic fieldP.

III. RENORMALIZATION GROUP ANALYSIS
OF STOCHASTIC AGGREGATION

The average mass distributionP̄(t) and average particle
densityN̄(t) admit functional integral representations whi
can be obtained by applying the Martin-Siggia-Rose pro
dure@28# to Eqs.~2! and~3! @equivalently see Eqs.~2!–~4! of
Ref. @7##. We then obtain

^O~ t !&5E DN~xW8,t8!DÑ~xW8,t8!DP~xW8,t8!DP̃~xW8,t8!

3O~ t !e2Se f f[N,Ñ,P,P̃] , ~11!

whereO(t)5N(xW ,t) or P(xW ,t) and

Seff5E
0

t

ddxdt@Ñ~Ṅ2DDN!1 P̃~ Ṗ2DDP!1l~ÑN2

12P̃PN1Ñ2N212ÑP̃NP1 P̃2P2!# ~12!

is the effective action functional. HereP̃ and Ñ are the re-
sponse fields. Perturbative expansions ofN̄(t), P̄(m,t) in
powers ofl can now be obtained in the standard way, s
for example, Ref.@29#. Feynman rules for constructing term
of these expansions are summarized in Fig. 1. Due to
nonrenormalization of the diffusion rate as well as the av
age mass density in the field theory, Eq.~12!, in all that
follows, we use units in whichr5D51. The average mas
distribution P̄(m,t) is formally given by the sum of all dia
grams built out of blocks presented in Fig. 1 with one o
going punctuated line (P line!. The contribution from each
diagram is a function oflN0t and ‘‘bare’’ dimensionless
reaction rateg0(t)5lt/td/2. Unless we are interested in th
small-time expansion ofP̄(m,t), lN0t cannot be treated as
small parameter. Therefore, the contributions of all diagra
proportional to a given power ofg0(t) and various powers o
lN0t have to be summed up. A simple combinatorial arg
ment~see Ref.@20# for details! shows that the contribution o

FIG. 1. Propagators and vertices of the effective theory,
~12!.
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a diagram withn loops is proportional tog0(t)n. In the weak
coupling regime the main contribution toP̄(m,t) and N̄(t)
is, therefore, given by the sum of all tree diagrams, the fi
correction comes from summing all one-loop diagrams a
so on. It turns out@20,30# that the sum of all tree diagram
gives the mean field answers, Eqs.~8! and ~9!. The expan-
sion in powers ofg0(t) is therefore the standard loop expa
sion around solutions of mean field equations. It is obvio
that in d,2 the loop expansion is not very useful at lar
times as limt→`g0(t)5`. Fortunately, the value of dimen
sionless reaction rate properly renormalized to account
the buildup of interparticle correlations turns out to be
ordere522d for large times. This allows one to convert th
loop expansion into ane expansion using the perturbativ
renormalization group method. Such an expansion wo
well for large times and will therefore yield all the informa
tion we need about the behavior of the average mass di
bution in the strongly fluctuating regime. In computing loo
corrections to any order, there are generally an infinite nu
ber of diagrams to sum. However these diagrams can
resummed in part if one introduces classical response fu
tionsGcl

NN andGcl
PP . Response functionGcl

NN (Gcl
PP) is equal

to the sum of all tree diagrams with one outgoing and o
ingoing line of typesN (P). As was already mentioned
mean field densities Eqs.~8! and ~9! are also equal to the
sums of tree diagrams with one outgoingN or P line corre-
spondingly. One then simply has to associate incoming li
with mean field densities and propagator lines with me
field response functions. Integral equations satisfied by c
sical densities and response functions are presented in
grammatic form in Fig. 2.

The solutions of the equations in Figs. 2~a! and 2~b! co-
incide with Eqs.~8! and~9!, as they should. The equations
Figs. 2~c! and 2~d! can also be solved with the result

Gcl
NN~x2 ,t2 ;x1 ,t1!5Gcl

PP~x2 ,t2 ;x1 ,t1!

5S N0~ t2!

N0~ t1! D
2

G0~x22x1 ,t22t1!,

~13!

.

FIG. 2. Diagrammatic form of mean field equations for~a! av-
erage particle density,~b! average mass distribution,~c!
NN-response function, and~d! PP-response function.
8-4
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where G0 is the Green’s function of the linear diffusio
equation.

Using the notion of mean field response functions a
densities, one can easily classify all one-loop diagrams c
tributing to the average mass distribution. The result is p
sented in Fig. 3. A quick check shows that analytical expr
sions corresponding to diagrams~i! and ~iii ! containing
primitive loops diverge ind>2, which is consistent with the
fact that the upper critical dimension of the effective theo
Eq. ~12! is 2. Computing the relevant integrals ind522e
dimensions we find the following one-loop expression
the average mass distribution:

P̄~ t !5
P0

N0
2 F S 1

lt D
2

1
1

~8p!d/2

1

lt (22e/2)
F~e!G

3F11OS 1

lN0t D G1~ two2loop corrections!,

~14!

where F(e)5(4/e)12e/2/@(11e/2)2(11e/4)#. Equation
~14! can be used to determine the large-time asymptotic
P̄(t) in the following way. The exact average mass distrib
tion satisfies the Callan-Symanzik equation which we w
derive below. Coefficients of this equation depend on the
of renormalization of all relevant couplings of the theory E
~12!. One relevant coupling is the effective reaction rate.
renormalization is known@18#. Below we will show that the
only other relevant coupling is the initial mass distributi
P0. We will determine its renormalization law with one-loo
precision, demanding that the expression Eq.~14! be nons-
ingular in the limit e→0 when expressed in terms of th
renormalized coupling constant and renormalized ini
mass distribution. This will determine the coefficients of t
Callan-Symanzik equation up to terms of ordergR , where
gR is the renormalized dimensionless reaction rate. Solv
this equation we will be able to compute the decay expon
of P̄(t) up to terms of ordere.

The dimensional analysis of effective vertex parts of
theory Eq.~12! shows that the only relevantbulk coupling is
the effective reaction rate. Its relevance is due to the re

FIG. 3. One-loop corrections to the mean field answer for av
age mass distribution.
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rence of random walks ind<2. Reaction-rate renormaliza
tion accounts for all fluctuation effects in theA1A→A
model.

However, the CCA model is more complicated and int
esting due to the presence ofboundary-relevant couplings.
To identify them, we use the following version of dimen
sional analysis. Boundary coupling constants correspon
vertices with no incoming lines. AsPP interactions can be
neglected in the problem at hand, we are interested in bou
ary vertices with at most oneP line. Assume for simplicity
that d52 ~critical dimension!. Assume also that the initia
densityN05`. This assumption is justified if one is inte
ested in the large time-behavior of correlation functions
aggregation, asN0 flows to infinity under renormalization
group transformation to increasingly larger time scales,
Ref. @16# for more details. LetGa,b(t), where a50,1; b
50,1,2, . . . , be thesimultaneous Green’s function of th
theory Eq.~12! with a P-lines andb N-lines with all exter-
nal momenta equal to 0. Using Eq.~13!, one can express
Ga,b(t) in terms of corresponding vertex partVa,b(t) as
follows:

Ga,b5S 1

t2D a1bE
0

t

dtt2(a1b)Va,b~t!. ~15!

As the physical dimension ofGa,b(t) is (L)22b24a, where
Va,b(t);t2b22a21. As a result, Eq.~15! converges at smal
times for anya if b.0. If b50 and a51, Eq. ~15! di-
verges logarithmically. This divergence can be regulariz
using a small-time cutoff 1/lN0 and leads to the renorma
ization of the initial mass distributionP0. The latter plays the
role of the coupling associated withV1,0.

As a result of the discussed divergence, diagrams invo
ing V1,0 grow faster with time compared with diagrams wi
the same number of loops but with no subdiagrams cont
uting to renormalization ofP0. Consequently, diagrams be
longing to the former class have to be resummed exactl
order to obtain the correct large-time behavior of the aver
mass distribution.

We conclude that fluctuations in the stochastic aggre
tion lead to two effects: renormalization of the effective r
action rateand renormalization of the initial mass distribu
tion. It follows that the renormalization of these tw
couplings regularizes the perturbative expansion ofP̄(m,t)
to all orders.

As it turns out, the renormalization ofP0 is solely respon-
sible for the Kang-Redner anomaly. In Sec. V we will an
lyze initial density renormalization by explicitly resummin
small-time divergences in the perturbative expansion
P̄(m,t). Now, we will show how it appears formally within
the framework of the perturbative renormalization gro
method. We follow dynamical renormalization group proc
dure described in Ref.@16#.

Let us fix a reference timet0.0. Expression~14! evalu-
ated att0 is to be made finite by absorbing the divergenc
appearing ase→0 into the renormalization of the reactio
rate and the initial density.

r-
8-5
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Let g05lt0
e/2 be the dimensionless ‘‘bare’’ reaction rat

As has been shown in Ref.@18#, renormalized reaction rat
gR is related tog0 via the following exact formula:

gR5
g0

11
g0

g*

. ~16!

Hereg* 52pe@11O(e)# is the nontrivial fixed point of the
renormalization group flow in the space of effective co
plings of Eq. ~12!. Recall thatg0;l. Hence liml→`gR
5g* . It follows from the Callan-Symanzik equation that th
large-time behavior of theP̄(m,t) is also determined by the
fixed point value of the effective reaction rateg* . We there-
fore conclude that the limitst.0,l→` and l.0,t→` of
the Kang-Redner model belong to the same universality c
as claimed in the Introduction.

Solving Eq.~16! with respect tog0, expanding the resul
in powers ofgR , and substituting the expansion into E
~14!, we obtain the average mass distribution at timet0 as a
power series ingR :

P̄~ t0!5
P0

N0
2gR

2 t0
d F12

1

g*
@11O~g* !#gR1O~gR

2 !G .

~17!

As expected, the order-gR term in Eq.~17! is still singular at
e50. To cancel the remaining divergences we have to in
duce a renormalized initial mass distributionPR :

PR5Z~gR ,t0 ,e!P0 , ~18!

whereZ is a power series ingR with coefficients chosen in
such a way, that the average mass density

P̄~ t,gR ,PR ,t0!5Z~gR ,t0 ,e!P̄~ t,l0 ,P0 ,e!, ~19!

when expressed in terms ofPR ,gR , is nonsingular ate
50. Substituting Eq.~17! into Eq. ~19! we find that

Z511
gR

g*
1O~gR

2 !, ~20!

in order for P̄(t) to be nonsingular at the one-loop level.
Now we can derive the Callan-Symanzik equation. T

fact that P̄(t,l0 ,P0 ,e) does not depend on the referen
time t0 leads to the following equation forP̄(PR):

t0

]

]t0
@Z21P̄~PR!#50.

Noticing that P̄(t)5t0
2d(PR /N0

2)F(t/t0 ,gR), whereF is a
dimensionless function, one can convert the above condi
into the Callan-Symanzik equation forP̄(t):

S t
]

]t
1

1

2
b~gR!

]

]gR
1d2

1

2
g~gR! D P̄~ t,gR ,PR ,t0!50,

~21!
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where b(gR)522(]/]t0)gR is the beta function of the
theory Eq.~12! and

g~gR!522
1

Z
t0

]

]t0
Z52

gR

2p
1O~gR

2 ,gR e! ~22!

is the gamma function.
It is well known that at large times and ind,dc52,

solutions to Eq.~21! are governed by nontrivial fixed point
~zeros! of the b function. Differentiating Eq.~16! with re-
spect to t0, one finds thatb(gR)5gR(gR2g* ). Hence,
b(gR) has a unique nontrivial fixed pointgR5g* . It follows
from the Callan-Symanzik equation@Eq. ~21!# that P̄(t)
;t2d* , t→`, where

d* 5d2 1
2 g~g* !. ~23!

We see that the scaling dimension ofP̄(m,t) differs from its
physical dimension by a term proportional to the value of
g function at the fixed point. This term is called the anom
lous dimension of the fieldP. The physical reason for the
presence of the anomalous dimension is the renormaliza
of the initial mass distribution by small time fluctuations.

As g* ;e, the substitution of thegR expansion ofg into
Eq. ~23! yields thee expansion ford* . Using Eq.~22! we
find that

d* 5d1 1
2 e1O~e2!. ~24!

Finally, one can restore them dependence ofP̄(m,t) using a
dimensional argument. The result is

P̄~m,t !5A~e!
1

td S m1/d

At
D eKR

, ~25!

whereeKR5e1O(e2) is equal to twice the anomalous d
mension of the stochastic fieldP.

Note that ind51, eKR51 andP̄(m,t);m1, which coin-
cides with the exact answer@5#. However, at the moment we
do not have reasons to believe, that higher ordere correc-
tions to our answer foreKR vanish identically for any 0,e
<1. Equation~24! implies that the anomalous dimension
P vanishes atdc52. Yet, it follows from the general theory
of the perturbative renormalization group that traces of
anomalous dependence ofP(m,t) on mass ind,2 must be
present at the critical dimension as well. We analyze
Kang-Redner anomaly ind52 in Sec. IV and compare
renormalization group predictions with the conclusions
the direct numerical simulations of the system of diffusin
aggregating point particles on the two-dimensional lattice

IV. KANG-REDNER ANOMALY IN TWO DIMENSIONS

It is well known that anomalies indc2e dimensions lead
to logarithmic corrections to the mean field theory answers
d5dc . The Kang-Redner anomaly is not an exception. T
small-mass behavior of the average mass distribution in
dimensions can be easily obtained by solving the Call
Symanzik equation@see Eq.~21!#. Note that
8-6
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b~g!ud525
1

2p
g2,

~26!

g~g!ud5252
1

2p
g@11O~g2!#.

Solving Eq.~21! with coefficients given by Eq.~26! and the
initial condition

P̄~ t0!5const3
1

gR
2 t0

2 @11O~gR!# ~27!

produced by the mean field theory, we find that

P̄~ t !5const3
ln~ t/t0!

t2
@11O„1/ln~ t/t0!…#. ~28!

Such a behavior ofP̄(m,t)um5 f ixed in two dimensions was
originally seen by Kang and Redner in numerical simulatio
@3#. We have now shown that Eq.~28! can be obtained as
result of systematic renormalization group computati
Analyzing their model in two dimensions, Kang and Redn
noticed thatP̄(m,t) is a slowly varying~increasing, as sug
gested by Fig. 2 of Ref.@3#! function of mass. We can now
quantify this observation by computing the mass depende
of the average mass distribution. Ind5dc , direct dimen-
sional arguments cannot be used to restore the mass de
dence of Eq.~28! due to the explicit dependence ofP̄(m,t)
on the lattice cutoff. Instead let us analyze Eq.~25! for
P̄(m,t) in the limit e→10. Near e50, the amplitude
A(e);e22. Expanding the right hand side of Eq.~25! in
powers ofe and using the fact thatP̄(m,t;e) is nonsingular
at e50 as a function of renormalized parameters, we fi
that

P̄~m,t !5
1

t2
$C1@ ln~ t/t0!#21C2ln~ t/t0!ln~m/t0!

1C3@ ln~m/t0!#2%@11O„1/ln~ t/t0!…#. ~29!

We are interested inP̄(m,t) in the limit t→`, m5fixed.
Time dependence ofP̄(m,t) is given by Eq.~28!. Therefore,
coefficientC1 in Eq. ~29! is 0. Hence

P̄~m,t !5const3
ln~ t/t0!ln~m/t0!

t2
@11O„1/ln~ t/t0!…#.

~30!

Note that Eq. ~30! is valid for m!M (t), where M (t)
;t/ ln(t/t0) is the typical mass. Ifm;M (t), then P̄(m,t)
;@ ln(t/t0)/t#

2, which coincides with the answer fo
P̄(m,t)um;M (t) in the intermediate mass range@7#.

To check our analytical results, Eqs.~28! and~30!, we did
a numerical simulation of the system on a two-dimensio
lattice. For the sake of computational efficiency, we chose
work in the limit l→` so that a lattice site can hold utmo
one particle. The lattice was chosen to be a square lattic
size 300033000 with periodic boundary conditions. In Fig
06611
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4, we show the variation ofP̄(m,t) with t for fixed smallm.

It is seen thatP̄(m,t)5c(m)ln(t)/t2, where c(m) is some
function of the massm. This is in excellent agreement wit
Eq. ~28!. To determinec(m), we studied the variation o
P̄(m,t)/ P̄(1,t) with the massm ~see Fig. 5!. We see that
c(m); ln(m), thus confirming Eq.~30!.

V. KANG-REDNER ANOMALY VIA EXPLICIT
RESUMMATION OF BOUNDARY DIVERGENCES

In this section we will derive Eq.~25! without using the
formalism of the renormalization group. Instead, we w
identify the principal set of diagrams contributing to th
large-time limit ofP̄(m,t) and derive a simple integral equa
tion satisfied by the sum of these diagrams.

Additional divergences in the terms of the perturbati
expansion of the average mass distribution discussed in
IV are actually due to the quadratic singularity of the me

FIG. 4. The variation ofP̄(m,t)t2 with t is shown form51,2,
and 4 on a semilog scale. The variation is linear, implying t

P̄(m,t)5c(m)ln(t)/t2, wherec(m) is some mass-dependent fun
tion.

FIG. 5. The small-m behavior ofP̄(m,t)/ P̄(1,t) is shown on a
semilog plot. The variation is linear, implying thatc(m); ln(m)
with c(m) as defined in the caption of Fig. 4.
8-7
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field expression Eq.~9! for the average mass distribution
N05`, t50. Let us illustrate this statement with the e
ample of diagram~i! of Fig. 3. Assuming for simplicity that
d52 and denoting ultraviolet cutoff byDt, we find that the
most divergent contribution coming from this diagram is

I ( i );
P0

2pl2N0
2t2

lnS t

Dt D E0

t

dt
lN0

11lN0t
@11O~1/lN0t !#.

~31!

SettingN05` under the sign of integration is clearly impo
sible, as the resulting integral would diverge. Direct comp
tation of Eq.~31! shows that

I ( i );
P0

2pl2N0
2t2

lnS t

Dt D ln~lN0t !@11O~1/lN0t !#.

~32!

We see thatI ( i ) is proportional to ln(t)2, not ln(t) as one
would have deduced from the simple loop counting. T
additional singularity is due to the fact thatP̄MFuN05`

;t22. ~Recall thatN̄MFuN05`;t21. As a result, divergence

at t50 are absent in the field theory ofA1A→0 reaction.!
The additional boundary singular terms are generall
present in all Feynman integrals contributing toP̄(m,t) and
have to be resummed to all orders of the perturbation the
to get the correct large-time asymptotics of the average m
distribution.

Let P(t2 ,t1) be the exact zero-momentum vertex fun
tion of typeP̃P—the sum of all one-particle irreducible dia
grams contributing to theP̃P response function divided b
the propagators corresponding to external lines. T
Schwinger-Dyson equation for the exact average mass d
bution reads

P̄~ t !5 P̄MF~ t !1
1

t2E0

t

dt2E
0

t2
dt1P~ t2 ,t1!P̄~ t1!. ~33!

Equation~33! is most easily derived using the formalism
Feynman diagrams. Its diagrammatic representation is g
in Fig. 6~a!. We know that in two dimensions,P̄(t);t22.
Therefore, neard52, the functionh(t)5 P̄(t)lt2 is slowly
varying. The following simplified version of Eq.~33! is
therefore valid to the leading order ine:

h~ t !511E
0

t

dt1P~ t1!h~ t1!, ~34!

where

P~ t !5t2E
0

t dt1

t1
2

P~ t,t1!. ~35!

Differentiating Eq.~34! with respect to time, we find tha
h(t) satisfies the following differential equation:

dh

dt
~ t !5P~ t !h~ t !. ~36!
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It turns out~see below! that at large times

P~ t !5
1

t S e

2
1O~e2! D @11O~1/te/2!#. ~37!

Solving Eq.~36! with P(t) given by Eq.~37!, we find that
P̄(t)[h(t)/t2;t [ 221e/21O(e2)] . Thus, we have been able t
rederive Eq.~24! without any reference to a renormalizatio
group.

Before we turn to the derivation of Eq.~37!, we would
like to demonstrate that solving integral equation Eq.~34! is
indeed equivalent to summing leading boundary singu
terms in the perturbative expansion ofP̄(t) to all orders. All
divergences att50,N05` can be regularized by setting th
lower limit of integration in the integral in the right hand sid
of Eq. ~34! equal to 1/lN0. The resulting equation,

h~ t !511
e

2E1/lN0t

t dt1
t1

h~ t1!, ~38!

can be solved using the method of consecutive approxi
tions. Settingh(t)5h0(t)1h1(t)1h2(t)1••• and treating
the integral in the right hand side of Eq.~38! perturbatively,
we find thath0(t)51 and

hn~ t !5
1

n! S e

2
ln~lN0t ! D n

, n51,2, . . . . ~39!

Note thath1(t) is equal to the one-loop boundary singul
term, h2(t) is the two-loop boundary singular term, and
on. Summing the resulting series forh one confirms our
main result thath(t);te/2. One loop-boundary singularity
leads to mass-dependent logarithmic corrections to the a
age mass distribution. This is most easily seen by expand
Eq. ~25! in powers ofe. These corrections, which were orig
nally observed in Ref.@7#, motivated to a certain extent th
present investigation.

FIG. 6. ~a! Schwinger-Dyson equation forP(t). Perturbative
expansion of the polarization operator~b! in the number of loops,
~c! in the order of exact vertex parts.
8-8
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KANG-REDNER SMALL-MASS ANOMALY IN CLUSTER- . . . PHYSICAL REVIEW E 66, 066118 ~2002!
The knowledge of the first term in thee expansion of the
decay exponent ofh(t) leads to a good approximation of th
average mass distribution, given thate ln(lN0t);1, but
e2ln(lN0t)!1. If the latter condition breaks down, we nee
to know the expansion of the polarization operatorP(t) to
second order ine and modify Eq. ~34! by including correc-
tions proportional to the derivativeh(t) @which account for
the fact thath(t) is not constant#.

We will now derive Eq.~37! by computingP(t) to the
first order ine using one-loop diagrams and verifying th
higher-loop diagrams lead to terms of ordere2 and higher. If
the mean field theory for the average mass distribution
exact, operatorP would have been identically equal to zer
Consequently only loop diagrams contribute toP(t2 ,t1).
The one-loop diagrams are shown in Fig. 6~b!. The compu-
tation of corresponding Feynman integrals is straightforwa
After integration with respect tot1 we find their respective
contributions toP(t):

P ( i )~ t !5
28lte/2

~8p!d/2t

~112e!

e~11e/2!2
, ~40!

P ( i i )~ t !5
8lte/2

~8p!d/2t

1

e~11e/2!
, ~41!

P ( i i i )~ t !5
28lte/2

~8p!d/2t

1

~11e/2!~21e/2!
. ~42!

Note that individual contribution from diagrams~i! and
~ii ! are 1/e times bigger than the contribution from diagra
~iii !, which does not contain primitive loops. Yet, terms
order e21 cancel upon addingP ( i )(t) and P ( i i )(t) leaving
terms of order up toe0—same as the leading order of term
of P ( i i i )(t). This cancellation explains why we had to a
count for an apparently subleading contribution of diagr
~iii ! to the perturbative expansion ofP(t). Such a cancella-
tion is not accidental and happens at all orders of loop
pansion: diagrams~i! and ~ii ! can be interpreted as the fir
two terms in thee expansion of the first term in the cumula
expansion ofP(t2 ,t1), see Fig. 6~c!. This term corresponds
to an exact total particle densityN̄(t) connected to theP̃P

propagator via an exactP̃NP vertex. The vertex is of the
order of the fixed point couplingg* ;e, while the exact
density is of the ordere21 @20#. Therefore the contribution o
the term in question toP(t2 ,t1) is of order 1, which is
reflected in the cancellation of the terms of the lowest or
in e in every term of its loop expansion.

Adding together Eqs.~40!–~42!, we find that

P~ t !5
2lte/2

~8p!d/2t
@11O~e!#1two-loop corrections.

~43!

Large-t behavior ofP(t) can be obtained from Eq.~43!
by replacing the bare reaction ratel with the renormalized
reaction ratelR(t);2pet2e/2,t→`. The result does indee
coincide with Eq.~37!.
06611
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It remains to verify that two- and higher-loop diagram
contribute only to higher order terms in thee expansion of
P(t). Order-e22 contributions from diagrams containin
only primitive loops cancel as explained above. Order-e21

contributions from diagrams with two primitive loops an
two-loop diagrams with one primitive loop are accounted
by the one-loop renormalization of the coupling constant
one-loop diagrams. Hence nontrivial corrections to the po
ization operator come only from two-loop diagrams conta
ing no primitive loops and nonsingular parts of all oth
two-loop diagrams. Simple counting shows that the contri
tion from such diagrams toP(t) is proportional to
@(lR(t)te/2)n#/e (n22)t;e2/t. A similar argument shows tha
n-loop diagrams contribute toP(t) at the orderen only.

Now it is very easy to characterize the class of diagra
giving the leading contribution to thee expansion ofP(t).
The statistics ofN(t) is strongly non-Gaussian. Yet, the ma
contribution to the polarization operatorP(t) comes from
the diagrams proportional to the first and the second cu
lants of the stochastic fieldN(x,t) only. Non-Gaussian ef-
fects are due to the fact that these cumulants are connect
the P̄P propagator via exact vertices.

It is also possible to derive formula Eq.~28! without using
the formalism of the renormalization group. Instead, one
solve Eq.~36! directly using the one-loop expression for th
polarization operatorP(t) in two dimensions. The latter ca
be obtained by setting in Eq.~43! d52 and replacing the
bare reaction ratel with the renormalized reaction rate i
two dimensions:lR(t)5@4p/ ln(t/t0)#@11O„1/ln(t/t0)…#. The
presented expression forlR(t) is easy to compute by explici
resummation of all diagrams contributing to the renormali
tion of the bare reaction rate, see Ref.@20# for details. The
resulting equation forh(t)[t2P(t) is

ḣ~ t !5
1

t ln~ t/t0!
h~ t !. ~44!

The solution is h(t); ln(t/t0). Correspondingly, P(t)
; ln(t/t0)/t

2, which coincides with Eq.~28!.

VI. KANG-REDNER ANOMALY AND CORRECTIONS TO
THE KOLMOGOROV PARTICLE SPECTRUM

Now we will show that the mean field resultP̄(m,t)
;m0 can be interpreted as a constant flux~Kolmogorov!
solution of the Smoluchowski equation. We will then inte
pret the Kang-Redner anomaly as a breakdown of Kolm
orov scaling due to strong flux fluctuations developing
large times.

Averaging Eqs.~2! and~3! with respect to noise one get
the following relation between one- and two-point mass d
tribution functions:

]^P&
]t

52l^PN&, ~45!

]^N&
]t

52
1

2
l^N2&. ~46!
8-9
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Let us look for solutions of Eq.~46! having the form

P̄~m,t !5
N̄~ t !

M ~ t !
J~m,t !, ~47!

where m5m/M (t). Recall thatM (t)5N̄21 is the typical
mass. The new dependent variableJ has a simple physica
meaning:*0

mdm8J(m8,t) is the average number of particle
with masses less thanM (t)m contained in the volume
N̄21(t).

At times much less thantc5(l)22/e, the relative fluctua-
tions of local density are small. As a result, mean field the
is applicable and̂JN&'^J&^N&. As a result, Eq.~45! sim-
plifies to

]

]t S J

m D5
]J

]m
. ~48!

Therefore,J/m is a locally conserved quantity with flu
equal to (2J). Note thatJ.0. Therefore the cascade ofJ/m
is inverse in the terminology of turbulence: its flux is di
rected towards the small masses. We see that self-sim
solutions of Eq.~46! correspond to constant flux solutions
Eq. ~48!. The latter is justJ5const. Constant flux solution
of kinetic equations are called Kolmogorov solutions in t
theory of weak turbulence, see Ref.@24# for details. We
therefore conclude that in the mean field approximation

^P&~m,t !5
N̄~ t !

M ~ t !
mekolm, ~49!

whereekolm50 is the exponent, which determines the Ko
mogorov scaling of the average mass distribution. Note
the flux J also has a meaning of dimensionless particle d
sity ~the number of particles in the volumeN̄21), which is
an obvious integral of motion.

The fact thatJ5const means that particles are equipa
tioned between the system’s degrees of freedom and
ticles’ flux is identically equal to zero. The characteristic fe
ture of the state Eq.~49! of our system is therefore th
presence of nonzero constant flux of one integral of mot
and the equipartition of the other. Similar kind of behav
has been observed in models of turbulent advection@31#

We know, however, that the mean field approximation
invalid in the limit of large times, if the dimension is or les
because of strong fluctuations of local particle density. Us
results of the previous sections one can interpret the Ka
Redner anomaly as the anomaly in the constant flux co
tion:

m
]J

]m
5

eKR

d
J, ~50!

whereeKR is the Kang-Redner exponent.
Solving Eq. ~50!, we find that P(m,t);me, where e

5ekolm1eKR /d. Therefore, the Kang-Redner anomaly c
be also interpreted as a correction to the Kolmogorov sca
of the average mass distribution due to strong fluctuation
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VII. CONCLUSION

In the present paper we have shown that the problem
cluster-cluster aggregation ind<2 can be effectively ana
lyzed using the renormalization group method. We ha
demonstrated that the dependence of the average mass
tribution on mass is determined by the anomalous dimens
of the stochastic fieldP ~local mass distribution!. This
anomaly is due to the relevance of boundary (t50) fluctua-

tions for the large-time asymptotics ofP̄(m,t). In that re-
spect the phenomenon of the Kang-Redner anomaly
sembles the phenomenon of boundary phase transitio
equilibrium statistical mechanics, see Ref.@2# for a review.
Formally, the anomalous dimension of the local mass dis
bution is a consequence of the nontriviality of theg function
of the effective field theory Eq.~12!. The fact thatg(g)Þ0
is ultimately responsible for the breakdown of the Smo
chowski theory~or equivalently, the renormalized mean fie
theory! is applied to the model at hand. At present, renorm
ization group analysis seems to be the only theoret
method of studying the problem of cluster-cluster aggre
tion in d.1. This is not quite satisfactory, as the analysis
essentially perturbative in nature. However, our theoret
predictions concerning the behavior of the average mass
tributions at small masses in two dimensions have been
ambiguously confirmed numerically.

In Sec. VI we have shown that there is a relation betwe
cluster-cluster aggregation and the theory of weak tur
lence. In particular, we demonstrated that the Kang-Red
anomaly can be interpreted as a correction to the Kolm
orov spectrum of particles in mass space. However, we m
stress that the analogy between our model and the phen
enon of turbulence must be taken with a pinch of salt: wh
the cascade of the conserved quantity in our model happ
along the mass axis only, conserved quantities~such as en-
ergy or enstrophy! in more traditional turbulent systems flow
through the scales of the physical space.

The method of dynamical renormalization group dev
oped in the context of the model at hand can be applied
other nonequilibrium particle systems as well. In particul
the problem of cluster-cluster aggregation with annihilati
of particles can be solved using techniques similar to th
outlined in this paper@32#. This latter problem is related to
the computation of the domain wall persistence exponent
the one-dimensionalq-state Potts model@32#.
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